Category: Radiology & Diagnostics

09 Dec 2020

Sedentary Nature in Radiology

The occupational hazards of radiology are well known: exposure to radiation, splashes with contrast media, bodily fluid exposure, and stress to name a few. Another less recognized danger for those in the profession is the sedentary nature of the work.

It’s estimated that diagnostic radiologists spend more than 8 hours a day sitting at their computers and workstations. Understanding how the sedentary nature in radiology affects a radiologist’s health and the quality of their work is important for preventing health issues and optimizing patient care. Knowing how to reduce the risks related to this workplace hazard is also important so those working in the profession know how to protect themselves.

 

What Is a Sedentary Lifestyle or Career?

The U.S. Department of Labor defines sedentary work as “exerting up to 10 pounds of force occasionally or a negligible amount of force frequently to lift, carry, push, pull, or otherwise move objects, including the human body. Sedentary work involves sitting most of the time, but may involve walking or standing for brief periods of time. Jobs may be defined as Sedentary when walking and standing are required only occasionally and all other Sedentary criteria are met.” By this definition, most of the work performed in radiology meets this criteria.

Researchers confirm this stating most image interpretation done by diagnostic radiologists is sedentary with radiologists sitting at a computer workstation to perform this work.

 

How Being Sedentary Affects Quality of Work and Radiologists’ Health

The sedentary nature in radiology contributes to stress which has been shown to decrease job satisfaction and lead to poor mental health outcomes. However, it’s also thought that stress associated with sedentary radiology work may contribute to poor workstation ergonomics. This may lead to an array of work-related musculoskeletal injuries that 30%-60% of radiologists report such as eyestrain, neck & back pain, carpal tunnel syndrome, and headaches.

And experts like Rebecca L. Seidel, MD agree that correct ergonomics are essential for the productivity, performance, and well-being of radiologists.

The risks of a primarily sedentary lifestyle for the general population are well-known and include health problems that carry high risks of morbidity and mortality such as:

  • •Hypertension
  • •Obesity
  • •Diabetes

Other diseases attributable to a sedentary lifestyle include cardiovascular disease and certain types of cancer with even higher mortality rates resulting from these diseases as sedentary behavior increases.

In fact, researchers point out that being sedentary contributes to all causes of mortality—not just those listed above. And this increased mortality risk exists even in those who engage in physical exercise regularly outside of their sedentary jobs. Excessive time spent sitting or in minimal movement is believed to contribute to a slower metabolism and many of the negative effects mentioned above.

 

How Radiologists Can Improve Health at Work

While a significant amount of a diagnostic radiologist’s job is sedentary, there are things that can be done to mitigate the health risks of sitting for prolonged periods of time. Experts studying the sedentary behavior in radiology suggest radiologists can improve their health by understanding and applying the concept of NEAT to their work.

The acronym NEAT refers to “nonexercise activity thermogenesis”. It includes activities of daily living that require energy for the body to perform such as walking, standing, sitting, and fidgeting. NEAT excludes sleeping, eating, and sports or fitness activities.

The concept of NEAT was studied by Levine et al. to determine whether or not fidgeting-like activities could counteract weight gain in sedentary adults who were overfed. Surprisingly, they discovered even low energy expenditure fidgeting activities were effective in maintaining metabolic rate and deterring weight gain in study subjects.

Fidgeting-like activities that radiologists could incorporate into their work that have been shown to increase energy expenditure significantly and reduce the negative effects of prolonged motionless sitting include using a mouse at the computer, typing, and tapping one’s foot.

In addition to making these relatively small changes, researchers suggest there are other things radiologists can do to increase NEAT and help ward off chronic health problems related to being sedentary.

Some of these things include:

1.  Drink more water

Drinking enough water has a number of health benefits. Water is needed for several important bodily functions. It also helps suppress appetite and control weight gain. Eating more foods with a higher water content can help reduce caloric intake and result in increased satiety after eating. To incorporate more activity with higher water consumption, use a small water bottle so you’re required to get up and refill it often.

2.  Consider standing to perform some work

Researchers found that standing motionless or standing and fidgeting also increases NEAT significantly compared to sitting motionless or fidgeting while seated. Most PACS workstations can be elevated which allows some reading and dictating to be done while standing. It’s also important to add some of the fidgeting-like activities mentioned earlier while standing since this significantly increases energy expenditure compared to standing motionless. However, it’s also important to keep in mind that periods of prolonged standing may lead to venous stasis and back pain so it’s best to keep moving and avoid any one position for too long.

3.  Walk more throughout the day

The benefits of walking are well-known and include increased calorie expenditure. Consider communicating about a patient with a colleague in your facility face-to-face rather than via phone or email. In addition to ensuring better communication, you’ll be taking care of your own health. Taking short breaks from radiological workstations has also been shown to help one stay focused, reduce eyestrain, and calm the mind.

4.  Perform some simple exercises at your workstation

Incorporate some simple exercises throughout the day at your workstation such as neck rolls, side stretches, seated spinal twists, and leg lifts. These basic exercises have been shown to reduce fatigue and decreases in metabolism while increasing NEAT expenditure and only take a couple minutes to complete.

5.  Include a variety of calorie-burning activities in your workday

Although the following activities haven’t been studied specifically with radiologists or in relation to radiology reading rooms, researchers suggest radiologists consider incorporating some of these activities into their workday to keep metabolism elevated and help reduce the likelihood of chronic diseases associated with being sedentary.

  • •Increase fiber intake which is associated with increased and prolonged satiety and reduces the incidence of obesity, hypertension, diabetes, coronary artery disease, and stroke.
  • •Be mindful of your caloric intake versus energy expenditure.
  • •Avoid eating 2 hours before bed when you’ll be more sedentary.
  • •Try to get 7-9 hours of restful, uninterrupted sleep at night since 4 hours of sleep or less over a prolonged period of time is associated with reduced metabolism.
  • •Set the timer on your phone or smart watch as a reminder to get up and stretch or move for the last 5 minutes of each hour.
  • •Consider tracking your activity level such as your daily steps as well as your food and water intake on a smart device such as your phone or smart watch. Make small improvements each day.

6.  Explore radiology room fitness workstations

Treadmills and elliptical machines are no longer equipment found only in fitness facilities. The benefits of incorporating this kind of equipment at standing workstations include an energy expenditure 200% greater than standing at rest. These machines are designed to be quiet enough for use in reading rooms and work well for home offices too. While cost and having adequate space to accommodate equipment may be a concern, installing even a single treadmill workstation that staff can rotate through may help reduce time sitting and provide staff with healthier ways to work.

 

Why Work With Double Black Imaging to Build a Healthier Workstation?

Double Black Imaging is proud to be known for its exceptional and unparalleled customer service in addition to our high standards that exceed other industry providers. We use advanced technology combined with the latest research to design innovative and reliable medical displays, ergonomic workstations, and software solutions to help make imaging more efficient and reduce healthcare costs.

At Double Black Imaging, our specialists will work with you to create the perfect workstation that takes into consideration your health as well as cost and space constraints. Contact us today at (844) 879-2247.

Contact our diagnostic imaging experts

 

Source List:

https://www.wajradiology.org/article.asp?issn=1115-3474;year=2018;volume=25;issue=1;spage=28;epage=33;aulast=Ogenyi

https://www.ajronline.org/doi/10.2214/AJR.15.15496

https://www.dol.gov/sites/dolgov/files/owcp/dfec/regs/compliance/owcp-5c.pdf

https://www.radiologytoday.net/archive/rt0620p14.shtml

https://www.unm.edu/~lkravitz/Sports%20Physiology/SedentaryLifestyle.pdf

https://pubs.rsna.org/doi/full/10.1148/rg.2018180030

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6857261/

https://academic.oup.com/ajcn/article/72/6/1451/4729468

09 Nov 2020

Wrong Radiology Image Interpretation Due to Non-Calibrated Displays

What is teleradiology?

Teleradiology is the exchange of digital images such as x-rays, MRIs, and CT scans between healthcare providers in different locations through electronic communication for the purposes of diagnosis and consultation.

What is required to perform teleradiology?

To perform teleradiology in the U.S., physicians must meet licensing requirements to practice telemedicine in the state in which they are acquiring and interpreting the study.

The ACR Task Force on International Teleradiology notes that “Physicians performing teleradiology services must have training equivalent to those physician providers of imaging services at that health care institution receiving these services.” The task force also states teleradiologists must engage in ongoing learning throughout their career to maintain skills related to the work they perform.

What’s the difference between diagnostic vs. non-diagnostic monitors?

In the ACR–AAPM–SIIM Technical Standard for Electronic Practice of Medical Imaging, diagnostic monitors or displays are also known as primary interpretation displays while non-diagnostic displays are referred to as secondary displays. The standard identifies specific technical requirements important for the image quality of diagnostic monitors while non-diagnostic monitors do not require the same specifications. These technical specifications help ensure the correct spatial and contrast resolution of images that is necessary for accurate interpretation.

In their review article examining the impact of computer display performance on the quality of digital imaging, Butt, Mahoney, & Savage (2012) highlight  that compliance to the Digital Imaging and Communications in Medicine (DICOM) Part 14 Greyscale Standard Display Function “standards is considered critical and represents the most important difference separating medical grade displays from standard or commercially available devices.”

To understand the difference between diagnostic monitors vs. non-diagnostic monitors or commercial off-the-shelf (COTS) monitors, it’s helpful to review the ACR–AAPM–SIIM–SPR Practice Parameter for Digital Radiography. In this document, equipment specifications for diagnostic monitors are outlined and adherence to these guidelines is “strongly recommended”.

This document identifies specific display characteristics diagnostic monitors should have to ensure high quality imaging. These characteristics include luminance response and pixel pitch and display size.

 

Luminance Response

Luminance refers to photon energy that reaches the eye and is controlled by 3 factors:

  1. Ambient luminance (Lamb) – This refers to the brightness still visible on the monitor when the power is off as a result of diffusely reflected light in the room. The practice parameter states, “The ambient luminance should be less than one-fourth of the luminance of the darkest gray level.”
  2. Minimum luminance (Lmin) – This requirement is important because the human eye adapts poorly to contrast in very dark areas. Hence, the practice parameter states “the luminance of the lowest gray value, Lmin, should not be extremely low. The minimum luminance including a component from ambient lighting, L’min = Lmin + Lamb, should be at least 1.0 cd/m2 for diagnostic interpretation, 1.2 cd/m2 for mammographic interpretation, and 0.8 cd/m2 for secondary displays.”
  3. Maximum luminance (Lmax) – The ability of the human eye to detect contrast characteristics of an image “depend on the ratio of L’max (the luminance for the maximum gray value including the component for ambient lighting) to L’min.” This is called the luminance ratio (LR) and isn’t the same as the contrast ratio monitor manufacturers often refer to.

According to the practice parameter, a LR of 350 is required. For adequate contrast, LR should always be greater than 250 but not much greater than 350 since the human eye can’t detect contrast at significantly higher LR levels. The practice parameter states “The L’max of diagnostic monitors used for interpretation should be at least 350 cd/m2 with an L’min of 1.0 cd/m2. For the interpretation of mammograms, L’max should be at least 420 cd/m2 with an L’min of 1.2 cd/m2.”

 

Pixel Pitch and Display Size

Pixel pitch refers to the spacing of pixel structures and determines the amount of detail that can be shown on the display. While it’s common to see monitors classified by the number of pixels they display, the practice parameter recommends selecting diagnostic monitors based on pixel pitch and display size. A pixel pitch of approximately 0.200 mm and not larger than 0.210 mm is recommended.

When considering display size, it’s important to be aware that the viewer’s vision extends to the edges of the display due to peripheral vision. Therefore, it’s recommended that the diagonal display distance be approximately 80% of the viewing distance. The document explains “At 2/3 meter, this corresponds to a diagonal size of 53 cm (21 inches). Monitors with a pixel array size of 1,500 × 2,000 and a pixel pitch of 0.210 will have a diagonal size of 52.5 cm.”

This document also outlines other important display elements for diagnostic monitors that should also be considered such as several workstation characteristics and ergonomic factors important to radiological imaging.

In short, using a non-diagnostic monitor to make a diagnosis may result in diagnostic error and doesn’t meet the guidelines set out in the practice parameter.

 

Examples of Diagnosis Gone Wrong

Miller & Zois state about 31% of all practicing radiologists will be sued for malpractice at least once during their career. 75% of these malpractice lawsuits have “diagnostic error” or “failure to diagnose” as their basis. In addition, they note that radiology has one of the highest rates of malpractice in medicine.

Painter shares the following case of a neuroradiologist who faced a lawsuit related to work she performed at home:

  • • A male patient was admitted to the ER with a “severe, unrelenting headache that had been going on for a few days.” A CT scan without contrast was done and sent for interpretation to a neuroradiologist working from home. The only clinical information provided was “headache with dizziness and giddiness”. However, the ER physician testified this wasn’t completely accurate for the patient but was the closest option on the pull-down menu in the hospital’s electronic medical record system. The ER doctor testified the “real reason” he ordered the CT scan was to check for signs of a stroke or other cerebrovascular abnormalities. The neuroradiologist said she thought she saw artifact on the CT scan at home but did not recommend repeating the CT scan because of this concern nor did she recommend an MRI which provides higher resolution to assist in diagnosis. She also did not phone the ER physician to obtain more information. She interpreted the CT scan as normal. The patient was discharged from the ER that day and suffered a massive stroke shortly thereafter.

 

Miller & Zois provide the following example of a lawsuit against a radiologist group.

  • • A 56-year-old female has a diagnostic mammogram that is interpreted as normal. A subsequent mammogram the following year shows she has a large tumor that results in a diagnosis of breast cancer. However, by that time, the cancer has spread outside of the breast and she dies two years after she is diagnosed. Her family sues the radiologist group for negligence in failing to identify the tumor during the first mammogram. The case goes to trial and the family are awarded $2.5 million in damages.

 

In Error and discrepancy in radiology: inevitable or avoidable?, Brady (2017) states “errors will always happen, but some can be avoided”. The question is “Which errors can be avoided?”

To answer this, Bruno, Walker, & Abujudeh (2015) suggest safety and quality in medical care may be improved considerably by reducing the variability in radiological processes. For example, this may be done by standardizing radiologists’ approach or the diagnostic imaging protocol. They also point out improvements to processes within systems of care are believed to contribute to fewer diagnostic errors.

 

Benefits to moving to diagnostic workstations for all radiology employees

Studies have shown improved accuracy as well as higher physician confidence with image interpretation using diagnostic monitors compared to COTS. This results in faster interpretation and diagnosis saving time and money while reducing the potential for litigation due to diagnostic error or failure to diagnose.

Although a more costly initial investment, medical grade monitors often prove their worth with ease of use, better quality images, and significantly longer life spans than non-diagnostic monitors that must be replaced up to four times more often than medical diagnostic monitors.

The ACR–AAPM–SIIM Technical Standard for Electronic Practice of Medical Imaging states consistent image presentation at workstations is essential for:

  • • Technologists acquiring images
  • • Radiologists interpreting images
  • • Physicians using imaging to provide patient care

Consistent image presentation on diagnostic monitors combined with the most current workstation characteristics and ergonomics set out in the standard enable all radiology employees to do their best work.

Working with Double Black Imaging to create the perfect radiology workstation

Double Black Imaging is an industry leader producing technologically advanced medical display systems that meet the high-quality standards radiologists have come to trust and rely on to provide accurate and timely diagnosis.

For information about quality medical grade displays, efficient workstations, the use of automated calibration tools and other benefits of purchasing monitors from Double Black Imaging, please contact our diagnostic imaging experts. We can answer your questions, provide demos, and show you how our monitors outperform those of the competition.

Contact our diagnostic imaging experts today to discuss your radiology department requirements.

Contact our diagnostic imaging experts

Sources List:

https://www.cozen.com/templates/media/files/publications/tpl1604-hodge3.pdf

https://www.acr.org/Advocacy-and-Economics/State-Issues/Licensure-Requirements

https://www.acr.org/Practice-Management-Quality-Informatics/Legal-Practices/Teleradiology

https://www.acr.org/-/media/ACR/Files/Practice-Parameters/Elec-Practice-MedImag.pdf

https://onlinelibrary.wiley.com/doi/full/10.1111/j.1834-7819.2011.01660.x

https://www.acr.org/-/media/ACR/Files/Practice-Parameters/rad-digital.pdf?la=en

https://otechimg.com/publications/pdf/wp_medical_image_monitors.pdf

https://www.millerandzois.com/malpractice-lawsuits-against-radiologists.html

https://www.painterfirm.com/a/730/Three-mistakes-radiologists-make-when-reading-a-CT-MRI-or-scan

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5265198/

https://pubs.rsna.org/doi/full/10.1148/rg.2015150023

https://www.itnonline.com/article/consumer-grade-vs-medical-grade-displays